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Abstract: We analyze a corpus of historical texts in terms of complex network theory.
This is done by means of the Patrologia Latina, a collection of Latin documents that
were written over a period of more than 1,000 years. We perform a lemmatization
of this corpus and map its documents onto the end of the productive period of the
corresponding authors. By means of this temporal ordering, we perform a transitivity
analysis on the level of lexemes and sentences as a function of time. This analysis
shows a remarkable law-like behavior of transitivity on the lexical and sentential level.

1 Introduction

A long-term historical text corpus comprises natural language texts that were produced
over a long period of time in the past. An example is the Patrologia Latina (PL) [Mig55],
which is a collection of writings of the Church Fathers and other ecclesiastical authors
that were written over a period of more than 1,000 years. With the growing availability
of tools for automatic text analysis, the processing of historical corpora comes more and
more into the focus of text-technology [LPF05]. There are four areas of advancements in
this area: corpus building, resource formation, corpus management, and corpus mining.
With a focus on Latin, these approaches can be reviewed as follows:

• Corpus building and resource formation: a multitude of projects aim at building text
collections and related lexical and syntactic resources. This includes, for example,
corpora of Latin texts of the early modern time as provided by the Camena project
[Sch01]) as well as full-text databases of Latin literature as included in the Biblio-

theca Teubneriana Latina (BTL-1) [Tom99] and its companion editions. As one of
the most sophisticated projects in this area, the Perseus Digital Library [SRCC00]
provides not only historical corpora, but also syntactic annotations [BPBC08]. See
[Kos05] and [PD10] for related endeavors. Note that all these projects integrate full-
form lexica of Latin.

• Corpus management and mining: the Perseus project has been built as a digital
library that operates on historical corpora of several languages. Recently, two addi-
tional projects have started that also integrate facilities for corpus management in
order to support text mining on Latin texts. Firstly, this relates to the eAQUA project
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[BHG08], which aims at extracting linguistic knowledge from ancient resources by
means of explorative data analysis. Secondly, the Linguistic Networks Project and its
eHumanities Desktop [GM10] provides, amongst others, access to the PL by means
of related methods. Both approaches leave the narrow focus on present-day corpora
in order to explore historical corpora and, thus, gain access to language change.

In this paper, we analyze the PL as a long-term historical corpus of Latin texts. This is done
with the help of mapping all PL documents onto the dates of the end of the productive
period of their authors. By means of this temporal ordering we derive a subcorpus of
1,000 texts in order to perform a cluster analysis on the level of lexemes and sentences as
a function of time (Section 3): starting from a graph model of layered linguistic networks
(Section 2), we utilize complex network theory to get insights into the temporal dynamics
of the PL as a long-term historical corpus (Section 4). We show a remarkable law-like
behavior of clustering on both the lexical and the sentential level. In order to provide
comparative values, we analyze a corpus of present-day texts in the same framework.

2 A Graph Model of 2-layer Linguistic Networks

A natural language is a multiresolutional system that is structured on various, interwoven
linguistic levels (e.g., the morphological, lexical or syntactic level). From a formal point
of view, such a system can be modeled as an instance of the class of multilayer graphs.
Generally speaking, a directed k-layer graph

D = (V,A,B) (1)

is a digraph whose vertex set is partitioned into non-empty, pairwise disjoint subsets
V1, . . . , Vk such that the following conditions hold:

• Layer-external arcs: ∀a ∈ A∃!Vi, Vj ∈ {V1, . . . , Vk} : in(a) ∈ Vi >= Vj 9 out(a).

• Layer-internal arcs: ∀a ∈ B∃!Vi ∈ {V1, . . . , Vk} : in(a) ∈ Vi 9 out(a).

The ith layer of a k-level graph, i ∈ {1, . . . , k}, is defined by the subgraph D(i) = Di =
(Vi, Bi) of (V,B) such that a ∈ Bi ↔ in(a) ∈ Vi 9 out(a). Likewise, the bipartite graph
that is induced by the layers i, j is defined by the subgraph D(i, j) = Dij = (Vi∪Vj , Aij)
of (V,A) such that a ∈ Aij ↔ (in(a) ∈ Vi ∧ out(a) ∈ Vj) ∨ (in(a) ∈ Vj ∧ out(a) ∈ Vi)
(note that Dij = Dji). Subsequently, we experiment with two linguistic layers, the lexical
and the syntactic layer. That is, we deal with 2-layer graphs D = (V,A,B) where A is the
set of arcs that either connect words with sentences or vice versa, while B is the union of
lexical and sentential arcs. Thus, we have to induce three graphs D1, D2 and D12 to build
a 2-layer graph where D1 is a co-occurrence graph, D2 is a graph of sentential relations
and D12 links sentences with their lexical constituents:

• D1 = (V1, B1) is induced as a lexical co-occurrence network by means of the co-
occurrence measure σ : V1×V1 → R+

0 of [HQW06]. That is, vertices v ∈ V1 denote
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lexical units that are output by lemmatizing the PL, while arcs denote significant
lexical co-occurrences in the sense of σ. This procedure of network induction is
described in detail in [MDW+10]. Note that in contrast to [HQW06], we do not
operate on word forms, but on lexemes. Note further, that for every arc a ∈ B1

there is an arc b ∈ B1 such that in(a) = out(b) and in(b) = out(a) since lexical
associations are, as mapped here, symmetric.

• D12 = (V12, A12) = (V12, A) is induced as follows: the vertex set of D12 is the
union of the set of lexemes V1 and the set of sentences V2. Further, for any lexeme
v ∈ V1 for which there exists a word form as a lexical constituent of the sentence
w ∈ V2, we generate two non-parallel but multiple arcs as elements of A12 that end
at v and w, respectively.

The third step is to induce the sentence network D2 = (V2, B2) for which B2 = B \ B1.
Our starting point is to connect sentences that express similar concepts, that is, sentences
with similar conceptual meanings. Evidently, the automatic detection of these meanings is
out of reach so that we need a heuristic. We do this by means of the following hypothesis:

H1: The more lexical units two sentences have in common and the higher the

degree of semantic specificity of these units, the higher the contribution of the-

se common lexical constituents to the conceptual similarity of both sentences.

Obviously, sentences that have no lexical constituents in common can still be semantically
related, for example, by a relation of entailment. Such relations are currently out of reach
of being automatically detected in huge corpora such as the PL. Therefore, we start from
H1 by saying that the probability of a conceptual similarity of two sentences is a function
of the semantic specificity and the number of the lexical constituents they share. This
approach can be implemented straightforwardly. In set-theoretical terms, sentences can be
represented as collections of lexical units so that multisets can be used to model the first
parameter, that is number. Further, the notion of semantic specificity can be modeled by
means of idf -scores [SB88]. Now, let vi, vj ∈ V2 be two sentences that are represented as
multisets Si and Sj . Then, the lexical overlap of vi and vj is computed as

ω(Si, Sj) =

∑
x∈Si∩Sj

i(x)∑
x∈S1

i(x) +
∑

x∈S2
i(x)−

∑
x∈S1∩S2

i(x)
(2)

where Si ∩Si is the multiset intersection of the set representations of vi and vj . i(x) is the
inverse document frequency (idf) of x in the underlying reference corpus, that is, the PL.
σ has the property that if S1 and S2 are identical, then σ(S1, S2) = 1. Otherwise, if their
intersection is empty, then σ(S1, S2) = 0. Note that we do not say that the conceptual si-
milarity of sentences equals their lexical overlap. Rather, we use ω(Si, Sj) to approximate
the impact of shared lexical constituents to conceptual similarity in the sense of H1.
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Variable Value

number of authors 1,320
number of texts 4,555
number of paragraphs 674,718

Variable Value

number of sentences 7,727,864
number of tokens 121,722,687
number of word forms 1,094,850

Tabelle 1: Quantitative characteristics of C1, the subset of the PL without commentaries.

3 The Corpora

In order to instantiate our model of 2-layer graphs, we start from a subset of 4,555 texts of
the PL by excluding all commentaries (see Table 1). Henceforth, this subcorpus is denoted
by C1. It is input to a preprocessing module that includes a sentence boundary detecti-
on, named entity recognition, lemmatization and an annotation of the logical document
structure of all texts in C1. The details of this preprocessing and of the preceding forma-
tion of a full-form lexicon are described in [MDW+10]. In this section, we concentrate
on describing the process of network induction based on the PL. In order to arrive at a
manageable time series analysis, we perform two steps of corpus selection: firstly, we rank
all texts in C1 by their number of tokens and select the 1,000 highest ranked documents
that follow the first 14 ranks. This subcorpus is denoted by C2. As we induce for each
of the documents in C2 a 2-layer graph, we have to analyze 2,000 networks in terms of
their topological characteristics. Obviously, this is a huge comparative network analysis.
Thus, the reason to build C2 is to reduce computational effort and to keep the corpus more
balanced. Secondly, we perform a mapping of the documents of the PL onto the date of the
end of the productive period of the corresponding author. This is done to get a temporal
ordering of C2. As a result of additionally applying a random ordering of documents with
the same time values, we get a linear ordering C = (x1, . . . , x1000) of C2. The time values
are annotated manually where we use the Documenta Catholica Omnia to get the author
information. As a result of this selection, we get the subcorpus C3 of 1,000 documents
that are ordered by the end of the productive period of their author. C3 is input to induce
a separate 2-layer graph for each of the 1,000 documents according to Section 2. That is,
we map C3 onto a corresponding time series of 2-layer graphs

(D[1], . . . , D[n]) (3)

where for each t ∈ {1, . . . , n} : D[t] = (V [t], A[t], B[t]), n = 1000, is the two-level graph

of lexical and sentential networking in document xt at time t such that D[t]
1 = D[t](1) is

the lexical and D
[t]
2 = D[t](2) is the sentential layer of D[t].

As a basis of comparison we analyze a corpus of newspaper articles of the Süddeutsche

Zeitung (SZ) from 1994 by the same procedure. The difference is that 2-layer networks are
not induced for each article as this would get tiny graphs, but not complex networks. Ins-
tead, we deal with each daily issue as a single document for which we induce a lexical and
sentential network as described above. This gives a time series of 301 2-layer networks.
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Abbildung 1: Time series of indices of lexical (left) and sentential networks (right) in the PL.

Abbildung 2: Time series of indices of lexical (left) and sentential networks (right) in the SZ.

4 Variation of Clustering of Textual Units in Time

In order to get insights into the temporal dynamics of the PL by example of the time
series of 2-layer graphs (see Equation 3) we compute four topological indices of complex
networks. The density or cohesion of a graph G = (V,E) is the number of its edges

in relation to the number of all possible edges in G: coh(G) =
∑

v∈V dG(v)

|V |2−|V | ∈ [0, 1]

where dG(v) is the degree of v ∈ V . Note that coh(G) is computed for the undirected

variant of D[t]
1 and D

[t]
2 , respectively, t ∈ {1, . . . , n}. Our expectation is that linguistic

networks of the sort considered here are sparse networks by analogy to small-world graphs
[New03]. This expectation is confirmed on the lexical and sentential level by example of
the newspaper corpus (see Figure 2). In both cases we observe a cohesion near to zero.
Interestingly, this observation correlates with the fact that the fraction lcc of vertices that
belong to the Largest Connected Component (LCC) is near to 1 – although in the sentential
network it is smaller than in the lexical network. Thus, lexical and sentential networking
results in highly sparse though connected graphs in the case of present-day language.

In the case of the PL, we observe a remarkably high value of lcc and a near to zero cohesion
on the lexical level. However, if we look on the sentential level, we observe a difference
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to the newspaper corpus: although a fraction of nearly 100% of vertices that belong to
the LCC is retained in almost all cases, the cohesion is much larger. One reason for this
difference is that while in the case of the Pl, sentential networks are computed by including
all links of at least average specificity (in the sense of Equation 2), in the case of the SZ
we retain a connectedness of nearly 100% if we include only those sentence links whose
weight is ≥ µ + 5σ. If we apply the same criterion to the sentence networks of the PL,
we get disconnected networks where lcc ≤ 70%. Thus, we conclude that networking is
much more stable in the present-day corpus than in the historical corpus. However, we also
observe a remarkably stable network pattern in the case of historical lexical networks. To
a minor degree this also holds for the historical sentential networks.

The second pair of indices that we consider relates to what is called transitivity in quan-
titative sociology, that is, the probability by which neighbors of the same vertex (e.g., a
person) are themselves neighbors (e.g., friends). More formally, the transitivity or cluster
value of an undirected graph G = (V,E) is as follows [WS98]:

C2(G) = Cws(G) =
1

n

n∑
i=1

cws(vi) =
1

n

n∑
i=1

adj (vi)/

(
dG(vi)

2

)
∈ [0, 1] (4)

where adj (vi) is the number of edges ending only at neighbors of vi. [BR03] discuss an
interesting alternative to C2 that is computed as follows:

C1(G) = Cbr (G) =

(∑
v∈V

(
dG(v)

2

)
cws(v)

)
/
∑
v∈V

(
dG(v)

2

)
(5)

The difference of C2 and C1 lies in the fact that the latter is a weighted mean in contrast to
C2, which is an arithmetic mean. C1 weights the impact of the transitivity of each vertex
v by its degree: the higher dG(v), the higher the impact of cws(v) to C1.

If we look on Figure 1 and 2 we observe a remarkably stable distribution of C2 and C1 on
the level of lexical networks (though to a minor degree in the case of lexical networking in
the PL). This patterned distribution is also observable in the case of sentential networks de-
rived from the present-day corpus and to a much smaller degree in the case of the historical
corpus. Interestingly, this exception correlates with the fact that in the case of sentential
networking in the PL, C1 and C2 have a similar spectrum of values. In all other cases we
observe a tremendous divergence of both cluster values. This is a hint that in these net-
works, high-degree vertices have small cluster values, while in the sentence networks of
the PL, high-degree and low-degree vertices tend to have the same impact. These findings
are in support of [BR03] who stress the need to use weighted cluster coefficients, which
are more expressive in terms of network topology.

In summary: with the exception of historical sentence networks, we observe an almost
constant transitivity of linguistic networks irrespective of time. Thus, clustering, cohesion
and connectedness evolve as stable topological indicators that hint at a law-like lingui-
stic networking. However, we also observe remarkable differences between historical and
present-day language. There may be at least four reasons for these differences: in the ca-
se of the newspaper corpus we can expect much more stable patterns of text production.
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There is certainly a tendency to highly stabilized text types due to a standardized process
of text production. This level of standardization may result in the almost constant cluster
coefficients of lexical and sentential networks. Secondly, we have to expect less hetero-
geneous genres in the case of newspaper articles in contrast to the PL with its indices,
sermons, handbooks etc. Thus, we need a more precise text-typological analysis of the PL
and a sophisticated look at clustering in different genres in order to underpin our findings.
Thirdly, the SZ is a short-term corpus, while the PL is a long-term corpus. This difference
in temporal scale may be an additional source of differences in the sense that the PL ma-
nifests language change that is not present in the SZ. Finally, the PL-based networks are
computed per document, while the SZ-based networks are computed per daily issue. The
corresponding differences in text coherence may also be a source of the deviations.

5 Conclusion

We analyzed a subset of the Patrologia Latina in terms of its temporal dynamics. We found
a pattern of clustering on the lexical level and on the sentential level, though to a minor
degree. In the case of lexical networking, this pattern is stable irrespective of the period of
time. Future work aims at investigating this pattern using larger sets of reference corpora.
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